Dual Mechanism of Neuronal Ensemble Inhibition in Primary Auditory Cortex

نویسندگان

  • Monica N. O'Connell
  • Arnaud Falchier
  • Tammy McGinnis
  • Charles E. Schroeder
  • Peter Lakatos
چکیده

Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

Memory formation and retrieval of neuronal silencing in the auditory cortex.

Sensory stimuli not only activate specific populations of cortical neurons but can also silence other populations. However, it remains unclear whether neuronal silencing per se leads to memory formation and behavioral expression. Here we show that mice can report optogenetic inactivation of auditory neuron ensembles by exhibiting fear responses or seeking a reward. Mice receiving pairings of fo...

متن کامل

The auditory cortex mediates the perceptual effects of acoustic temporal expectation

VOLUME 14 | NUMBER 2 | FEBRUARY 2011 NATURE NEUROSCIENCE Attention to moments in time is a powerful cognitive mechanism for exploiting temporal structure in behaviors such as hunting moving prey or playing music in an ensemble. Anticipation of an event can influence the speed of behavioral response as well as our perception of the event1, but it is not known how these improvements in perception...

متن کامل

Fear Learning Regulates Cortical Sensory Representations by Suppressing Habituation

Projections from auditory cortex to the amygdala are thought to contribute to the induction of auditory fear learning. In addition, fear conditioning has been found to enhance cortical responses to conditioned tones, suggesting that cortical plasticity contributes to fear learning. However, the functional role of auditory cortex in the retrieval of fear memories is unclear and how fear learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2011